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A B S T R A C T   

Currently, most of the existing fusion methods ignore the rich multi-source information of different types of 
sensor nodes in the underwater unknown environment, which makes it challenging for Autonomous Underwater 
Vehicles (AUVs) to accurately perceive the external environment and make actionable decisions. Considering the 
key issues such as attitude estimation, positioning and obstacle avoidance involved in performing AUV tasks, this 
paper proposed a Multi-Source Information Fusion (MSIF) model for Spherical Underwater Robots (SURs) we 
developed based on various low-cost sensors. Multi-source information from an Inertial Measurement Unit 
(IMU), Pressure Sensor Array (PSA), Obstacle Avoidance Sensor Array (OASA), Depth Sensor (DS), Looking- 
Down Camera (LDC) and Acoustic Communication System (ACS) were fused to enable SUR to obtain high- 
precision estimated data for attitude estimation, positioning and obstacle avoidance, etc. More precisely, ac-
cording to the correlation between the sensors, the optimized model was constructed to compensate for angle 
errors, velocity errors, orientation errors, etc. Subsequently, a machine learning method using Back Propagation 
Neural Network (BPNN) was proposed to improve the accuracy and effectiveness of the MSIF model through 
feature selection, data training, and feature estimation, etc. Finally, a series of experiments were performed 
under different scenarios, such as motion and obstacle avoidance experiments. The theoretical derivation and 
comprehensive evaluations demonstrated the effectiveness and feasibility of the proposed model, which provided 
a new reference value for solving issues such as attitude estimation, positioning and obstacle avoidance of AUVs.   

1. Introduction 

In recent years, underwater robots have been increasingly used in 
underwater salvage, marine exploration, resource development, etc. 
[1–3]. Especially AUVs are gradually assisting or replacing humans to 
perform some dangerous and challenging tasks. Thus, improving the 
underwater work efficiency and capability of AUV’s control system, 
such as navigation and positioning accuracy, fault tolerance, robustness, 
and anti-disturbance, is a hot topic. 

AUVs employing a single sensor lack the ability to sense the external 
environment fully and reliably [4–5]. Thus, high autonomy and envi-
ronmental perception are considerable for AUVs in uncertain under-
water environments. MSIF technology is an effective way to improve the 
perception ability of the robotic system. By complementing, supporting, 
and correcting each other, more detailed information is provided for 
AUV, making its action behavior more accurate [6–7]. MSIF also 

enhances the control system’s robustness and anti-disturbance perfor-
mance from the perspective of information presentation. Furthermore, 
some issues in AUV attitude adjustment [8], localization [9], autono-
mous motion [10], etc., require comprehensive consideration of infor-
mation quality, and MSIF is an important guarantee for improving the 
quality of data analysis and processing. 

As mentioned above, this paper aims to combine data across multiple 
sensor nodes to draw more accurate and specific inferences than a single 
sensor [11–13]. MSIF now mainly focuses on the application of 
land-based intelligent robots, while related research on AUVs is rela-
tively scarce. This work is based on the SUR prototype we proposed [1, 
4-5,14], and uses MSIF technology to enhance SUR’s environmental 
perception and execution capabilities, so that SUR can interact with the 
external environment to adapt to the complex and unknown underwater 
environment. In addition, SUR motion control and decision-making can 
be improved by processing the collected information. 
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Here, we further conclude some research related to MSIF. Yager [15] 
pointed out the importance of MSIF and the issues that need to be 
considered. Zhang et al. [16] mentioned that the model construction and 
fusion of MSIF for different scenarios is the core problem to be solved 
urgently. Liu et al. [17] proposed an online Remaining Useful Life (RUL) 
prediction mechanism for machining tools using MSIF technology, 
aiming to estimate unpredictable failures and unscheduled maintenance 
to improve equipment reliability. Che et al. [18] employed evidence 
theory, probability theory, and information entropy to deal with the 
information fusion of uncertain data in a Multi-Source Information 
System (MSIS), which created a novel route for granular computing. In 
addition, the application of MSIF on Unmanned Aerial Vehicles (UAV) 
has been increasing [19–21]. Nguyen et al. [22] developed a fusion 
measurement strategy based on multi-sensors, such as vision sensors, 
Inertial Measurement Unit (IMU), ranging sensors, lidar odometry sub-
systems, etc., which provides a reliable, accurate, and flexible scheme 
for UAV applications in the real world. Liu et al. [23] designed a 
multi-target collaborative navigation system using the MSIF method, 
aiming to improve the efficiency and accuracy of multi-UAV localiza-
tion. For some underwater application scenarios, such as undersea 
tunnel construction, Zhou et al. [24] proposed a new risk assessment 
method by integrating jobsite monitoring data, design data, environ-
mental data, etc., and the proposed system assessed from multiple di-
mensions to avoid accidents. Lighthill [25] used the lateral-line sensors to 
significantly increase the resistance for a regularly swimming clupeid 
fish’s motion. Most of the above-mentioned MSIF technologies are 
mainly studied for data training or UAV applications, while the MSIF for 
AUV is relatively lacking. In addition, MSIF is of great significance in 
various issues underwater, such as localization and attitude estimation, 
but how to utilize the characteristics of multi-sensor nodes still faces 
huge challenges. 

In our previous research, we have made some progress in the control 
system for SUR [26–30]. In [5], an obstacle avoidance model based on 
multi-ultrasonic sensor array is proposed considering SUR kinematic 
and dynamic models. In [14], an attitude regulator is designed based on 
the counterweight mechanism, and the Back-stepping Sliding Mode 
Control (BSMC) method is implemented considering the uncertainty and 
nonlinearity of the SUR model. In [6], some simulations are conducted 
using Gazebo simulator on the self-localization system with 
multi-sensor. In addition, some positioning methods are studied such as 
Simultaneous Localization and Mapping (SLAM), Proportional Integral 
Derivative (PID) [28] and Generalized Prediction Control (GPC) [29]. 
And some obstacle avoidance methods are studied such as Fuzzy Control 
(FC) [28] and Ant Colony Optimization (ACO) [30]. However, we found 
that with the increasing underwater mission requirements, increasingly 
sensors are installed, while fusing the information collected by multiple 
sensors effectively is challenging. 

In this study, an MSIF model is proposed to effectively fuse multiple 
data and establish the correlation between sensor nodes. The contribu-
tions of this paper are summarized in the following three aspects:  

1) Firstly, compared with our previous works, a comprehensive set of 
sensors, i.e. DS, PSA, OASA, IMU, LDC and ACS, are fused. To inte-
grate such a comprehensive sensor set, a more general MSIF scheme 
is developed to improve the practical application value of SUR in 
performing tasks. The proposed MSIF model improves the accuracy 
of motion recognition parameters. Moreover, the relationship be-
tween multiple sensors is established and optimized, which can 
comprehensively evaluate the performance of the SUR, reflecting the 
tight coupling and fusion between multiple data.  

2) Secondly, traditional methods generally only consider the design or 
measurement of individual data sources, and lack constructing the 
observation model for MSIF. In this work, our method considers 
multi-sensor information, such as distance, position, orientation, and 
motion perception, which reduces errors in positional offset, veloc-
ity, and tracking.  

3) Finally, the link between sensor nodes is established through the 
optimized prediction model, which ensures the robustness, anti- 
disturbance and effectiveness of the SUR control system. Then, a 
series of experiments are performed to verify the performance of the 
proposed MSIF model. 

The remainder of this paper is organized as follows: Section 2 de-
scribes the system overview of SUR and the MSIF model proposed in this 
paper. Then, the optimized prediction model for SUR is developed in 
Section 3, including the attitude estimation model, velocity estimation 
model, depth estimation model, obstacle avoidance model and multi- 
sensor optimal estimation model. Afterward, Section 4 carries out a 
series of experiments in real environments, such as motion and obstacle 
avoidance experiments. Finally, in Section 5, we further comprehen-
sively analyze and discuss the performance of the proposed MSIF model. 
Finally, Section 6 concludes the paper. 

2. System and methods for the SUR 

In this section, the overall system of the SUR is first introduced. Then 
the idea of multi-sensor fusion is described, including IMU, PSA, OASA, 
DS, LDC and ACS. Next, we introduce the machine learning tools applied 
to the MSIF model. 

2.1. SUR system overview 

SUR is a miniature AUV inspired by jellyfish for underwater missions 
[1,4,9,31-32]. Its size and total weight are about 54 cm and 7.9 Kg, 
respectively. It mainly consists of two 3-D printed half shells, the power 
supply unit, the driving unit, the processing system, and the sensor unit. 
The SUR has a hybrid propulsion device [31–32] (multi-water-jet 
thrusters and propellers) that enables multi-mode switching, which al-
lows the SUR to select the motion mode from the starting position to the 
target according to the actual environmental conditions [4], improving 
execution efficiency and shortening operation time. Furthermore, in 
unknown underwater environment, the SUR perceives and reflects the 
surrounding environment information mainly through the carried 

Fig. 1. The sensor system carried of the SUR.  
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sensor unit, mentioned in [1,5,30,33]. This work aims to process data 
from the sensor unit based on different features to obtain a fusion model. 

The sensor unit of SUR used during the experiments mainly consists 
of a micro data modem ACS [34], DS MS5837–30BA, PSA which is 
composed of six CJMCU-5837 pressure sensors, OASA which is 
composed of four JSN-SR0T4 ultrasonic sensors, IMU MPU-9250, see 
Fig. 1. The CJMCU-5837 sensor has a new generation with a resolution 
of 2 mm with size (length x width) of 18 mm x 10 mm. For the PSA, one 
on the top, one on the bottom and four on the center track. The 
JSN-SR0T4 ultrasonic sensor can provide a 20–600 cm non-contact 
distance sensing function, ranging in accuracy up to 2 mm (with a 
diameter 12 mm). And the OASA is located in the center track. The 
distribution of the sensor array depends on the robot’s motion features 
and hydrodynamic environment. Then, information from all sensors is 
transmitted to the processing unit, consisting of Arduino Mega 2560 and 
ARM Cortex-M3, for sensor fusion and state estimation etc. [33–35]. 

Fig. 2 shows the schematic diagram of the SUR control system. In the 
driving unit, the actuator uses a hybrid propulsion device that uses 
water-jet thrusters to achieve low-velocity stable motion during turns, 
and use propeller or hybrid propulsion to achieve fast-flexible motion 
when there are moving obstacles or in unrestricted space, etc. [4]. In 
addition, the attitude and heading of the SUR are mainly controlled by 
the IMU MPU9250, which consists of a three-axis accelerometer, a 
three-axis gyroscope, and a three-axis magnetometer. The yaw, pitch, 
roll, angular velocity, and angular velocity variables of the SUR are 
output in the control system with ARM Cortex-M3 at a sampling rate of 
50 Hz. Arduino Mega control board for PSA and OASA data acquisition 
and pre-processing. The PSA is mainly used to measure the static pres-
sure of the SUR under water, which can be used for attitude estimation 
and depth estimation, detailed in Section 3. When the SUR is moving 
underwater, the observation system, which is composed of the host 
computer system, base station and an LDC, is used to realize the SUR 
positioning. Noted that the transmission rate of the ACS and the host 
computer is 50 Hz. 

2.2. Data fusion description 

Based on the control system mentioned above, we know that the SUR 
is equipped with multiple sensors. Thus, to comprehensively evaluate 
the performance (such as effectiveness, accuracy, robustness and anti- 
disturbance, feasibility) and test results of the SUR when performing 
tasks underwater, an MSIF model combined with the BPNN method is 
proposed as part of the SUR skill assessment. Metric evaluation system 

workflow is presented in Fig. 3, including the data preparation, pre- 
processing, data fusion and model evaluation. 

Here, we first describe the role of various sensors. For the IMU, as the 
most critical sensor in positioning and attitude estimation, it can be used 
for basic physical quantities such as measurement, acceleration and 
rotation velocities. For the PSA, it can be used for external environment 
perception, motion recognition and velocity measurement. For the 
OASA, it can be used to detect the distance of surrounding obstacles in 
real-time so that the SUR can safely perform tasks by avoiding obstacles. 
As can be seen that a certain relationship can be established between 
these sensor data, such as velocity and position, etc. The real-time 
correction between the data can reduce the overall error, correct the 
positional drift of the SUR in all directions, and can greatly adjust the 
robot’s attitude and velocities, real-time obstacle avoidance, etc. Thus, 
this paper designs the following IMU/OASA/PSA/DS data fusion model. 
In this way, when a certain sensor signal fails, the absolute position error 
can be calculated through other sensor data through communication and 
observation. It aims to solve the problems such as fusion model con-
struction, data processing, factor derivation, etc., and enhance the pre-
dictive accuracy of predictive mode by combining different data sources. 

Multi-source data should be pre-processed before fusion [36–37]. 
First, due to the influence of unavoidable factors such as the external 
environment, the data collected by multi-sensors have a lot of redundant 
information, which will interfere with signal analysis to a certain extent. 
There is therefore a need to filter out poorly measured values and 
perform signal pre-processing. The filtering of these poorly measured 
values is mainly limited by a defined threshold, and only those within 
the threshold are passed on. Then, for the IMU data, after transforming 
coordinates from tn to tn+1, the PSA values are combined to adjust the 
robot’s attitude. For the OASA data, the adjustment of robot motion is 
mainly combined with the DS data. Finally, all measurements at a 
certain time [tn, tn+1], including the interpolated values, are used in the 
design of the optimized model by constructing cost factors to estimate 
the state estimation and attitude prediction. 

2.3. Application method of BPNN based on MSIF 

BPNN, as a commonly used supervised machine learning tool, has a 
wide range of applications in many fields such as optimization, signal 
processing, prediction, perception, intelligent control and fault diag-
nosis [38–40]. While on a mission, the SUR receives and stores 
multi-sensor signals. The prediction system mainly involves two types of 
data, offline and online, as shown in Fig. 3. 

For offline signal data processing, the purpose is to classify the data, 
correct the deviation and judge the execution action. After pre- 
processing, the relevant features are extracted by denoising the time 
domain and frequency domain features. Optimal features related to the 
SUR parameter and behavior are selected and classified. These selected 

Fig. 2. Diagrammatic sketch of the control system of the SUR.  

Fig. 3. The evaluation system workflow for SUR based on the MSIF model.  
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features are trained using the BPNN method to predict and improve the 
SUR accuracy and efficiency. Simultaneously, online signal data pro-
cessing is triggered when BPNN model training and validation are 
completed. After completing the feature extraction and selection, the 
optimized features will be transferred to the MSIF model, which will be 
compared and controlled in conjunction with the result of BPNN. 

The structure of BPNN consists of input layer X(N), hidden layer H 
(M) and output layer Y(O), [41] as shown in Fig. 4. Where i ∈ {1,2,…,

N}, j ∈ {1,2,…,M}, k ∈ {1,2,…,O} is the number of per layer neurons. 
tk and ek express the desired output value and error, respectively. In 
addition, it also can arbitrarily fit multi-dimensional data problems. The 
input and output layers can be represented as: 
{

X(N) = [x1, x2,…, xN ]

Y(O) = [y1, y2,…, yO]
(1) 

The input expression of the hidden and output layers can be 
expressed, respectively, as follows: 

IHj =
∑N

i=1
Wi,j

in xi − bj

IOk =
∑M

j=1
Wj,k

outOHj − bk

(2)  

where IHj and IOk represent the input of the neuron of hidden layer j and 
output layer k respectively. bj and bk denote the corresponding threshold 
of the neuron j and k, respectively. 

The output expression of the hidden and output layers can be 
expressed, respectively, as follows: 

OHj = fH
(
IHj
)
= fH

(
∑N

i=1
Wi,j

in xi − bj

)

OOk = fO(IOk) = fO

(
∑M

j=1
Wj,k

out ∗ OHj − bk

) (3)  

where OHj and OOk represent the output of the neuron of hidden layer j 
and output layer k respectively. 

To perform the mission appropriately, the output error is calculated 
as follows: 

ek = tk − yk (4) 

In the layer-by-layer transmission of the signal, the weight and 
threshold are continuously adjusted by the error ek to make the output 
value closer to the desired value. In this study, the Root Mean Squared 
Error (RMSE) is used to represent the prediction error of the output 
layer, as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑O

k=1
(tk − yk)

2

√
√
√
√ (5) 

In addition, datasets in various locomotion experiments are used for 
training, including linear motion, diving motion, rising motion, 
comprehensive motion, and obstacle avoidance motion. The dataset 
settings in motion experiments are as follows: 60% of the datasets are 
used for training, and 40% for testing. The input is the information of 
different types of sensor nodes, and the output is the optimized sensor 
information model. Then, BPNN is compared with some other machine 
learning tools, such as Logistic Regression (LR), Support Vector Machine 
(SVM), Naive Bayesian (NB) and Random Forest algorithm (RF) to verify 
its effectiveness. 

For BPNN, the training function adopted the train-Berger-Marquardt 
backpropagation method, and the transfer function used the sigmoid 
function, as shown in Table 1. Noted that the number of nodes in the 
hidden layer is determined by the number of nodes N in the input layer 
according to Kolmogorov’s superposition theorem, which satisfies 2N+2. 
For LR, the cost function was set to 0.3, and the learning rate was 0.1. 
For RF, the number of trees was 20 and the treebaggar function was used. 
For NB, the criterion value was set to 0.04 and the fitcnb function was 
used. For SVM, the ploy-nominal kernel and svmtrain function was chosen 
in training, and the value of ploy-nominal defaults to 3. The training 
results using five learning methods are presented in Section 5.3. 

3. Establishment of the optimized prediction model 

In this part, the optimized prediction model for the SUR is built in 
detail. Furthermore, some practical application problems, such as atti-
tude estimation, velocity estimation, depth estimation and obstacle 
avoidance are solved. The correlation between multiple sensor nodes is 
established according to the sensor’s physical characteristics, as shown 
in Fig. 5. 

3.1. Attitude estimation model 

In [42], it is mentioned that in real conditions the disturbances 
induced by the dynamic environment are not limited to a single 
dimension. The displacement deviation of SUR due to the lack of 
counterweight mechanism is mainly caused by pitch and roll angle 
changes [14]. To effectively compensate for these disturbances, we 
propose a novel attitude estimation model for SUR based on PSA and 
IMU. 

For IMU, the roll and pitch angles can be solved by the accelerom-
eter, and the yaw angle can be solved by the magnetometer. The rotation 
matrix RB

E from the Earth coordinate frame {E} to the Body coordinate 
frame {B} is expressed as: 

RB
E = R( − ϕ, − θ, − ψ)

=

⎡

⎢
⎣

cθcψ cθsψ − sθ
− cϕsψ + sϕsθcψ cϕcψ + sϕsθsψ sϕcθ
sϕsψ + cϕsθcψ − sϕcψ + cϕsθsψ cϕcθ

⎤

⎥
⎦

(6)  

where s and c represent sin and cos, respectively. 
Assuming that the acceleration of the accelerometer is consistent 

with the acceleration of gravity, satisfies a = g = (0,0, 1)T . The accel-
erometer data is obtained through the rotation matrix RB

E , yields, 

a = RB
E ∗ g (7) 

Fig. 4. The structure of the BPNN model.  

Table 1 
Specific parameters of the machine learning tools.  

Parameters SVM NB RF LR BPNN 

Network layers 3 3 3 3 3 
Network structure 3 0.04 20 0.3 6 £ 14 £ 1 
Training function svmtrain fitcnb treebaggar sigmoid sigmoid 
Total dataset size 12,000 12,000 12,000 12,000 12,000 
Learning rate 0.1 0.1 0.1 0.1 0.08  
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where g is the acceleration of gravity. 
The measured value a of the roll and pitch angles can be calculated, 

satisfies, 

a =
[
ax, ay, az

]T

= [ − sθ, sϕcθ, cϕcθ]T
(8) 

Thus, the roll and pitch angles can be expressed as 

ϕ = arcsin(ax)

θ = − arctan
(

ay

az

) (9)  

Here, we use ri to define the pressure measurement point relative to the 
frame {B}, which satisfies the Cartesian coordinate frame. The new 
coordinates related to roll and pitch angles satisfy: 

rR
i = ri ∗ R(ϕ, θ) (10)  

where R(ϕ, θ) yields: 

R(ϕ, θ) =

⎡

⎣
cθ cθ − sθ

sϕsθ cϕ sϕcθ
cϕsθ − sϕ cϕcθ

⎤

⎦ (11) 

As we mentioned, PSA can be used for attitude estimation, depth 
estimation (described in Section 3.3), as shown in Fig. 6. In this part, the 
PSA is used to compensate for the attitude. 

The hydrostatic pressure component between the measurement 
points is calculated to correct the pressure difference, as shown in Fig. 6 
(a). The difference between sensor s1 and other sensors can be expressed 
as: 

Ds1s2 = lasinϕ
Ds1s3 = lbcosϕsinθ + lasinϕ
Ds1s4 = lbcosϕsinθ

(12)  

Here we estimate ϕ and θ as state variables, then the observation side 
matrix can be expressed as: 

Fig. 5. Establishment of multi-sensor correlation and proposition of estimation model for the SUR.  

Fig. 6. Schematic of (a) attitude estimation using PSA, (b) The z-axis component of the pressure sensor for depth estimation.  
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Eobserve =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂Ds1s2

∂ϕ
∂Ds1s2

∂θ
∂Ds1s3

∂ϕ
∂Ds1s3

∂θ
∂Ds1s4

∂ϕ
∂Ds1s4

∂θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 lasinϕ

lbcosϕcosθ lacosϕ − lbsinϕsinθ

lbcosϕcosθ − lbsinϕsinθ

⎤

⎥
⎥
⎦

(13)  

3.2. Velocity estimation model 

Fig. 7 shows the hydrodynamic on the surface of SUR body which can 
be approximated by Bernoulli’s law [43–44] based on incompressible 
flow and neglecting the elevation effect, the relationship between 
pressure p and velocity v∞ at point B satisfies: 

v∞ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(pA − pB)

ρ

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅
2ΔpAB

ρ

√

(14)  

where ρ represents the density of the water. 
Assuming that the measurement point B is a stationary point on the 

SUR body, the relationship between the velocity at any position C and 
the free flow velocity can be described as: 

vc =
3
2

v∞sinϕc (15)  

where ϕc is the angle between stagnation point A and measurement 
point C. Substituting Eq. (15) into (14) gives 

v∞ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
ρ

4ΔpAB

9sin2ϕc

√

(16)  

Then the differential pressure component in the z-axis direction between 
the stagnation point A and the two additional measurement points C and 
C* can be corrected as 

Δpc1 = Δp1 −
(
zR

a1 − zR
a0

)
ρg

Δpc2 = Δp2 −
(
zR

a2 − zR
a0

)
ρg

(17) 

According to the quadratic average of the pressure differences, we 
can drive that 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δp2
c1 + Δp2

c2

2

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1
2

ρ
(

3
2

v∞sinϕc1

)2
)2

+

(
1
2

ρ
(

3
2
v∞sinϕc2

)2
)2

2

√
√
√
√
√
√

(18) 

To sum up, the compensated equation can be obtained as follow: 

v∞ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
ρ2

(
4ΔpAB

9sin2ϕc

)2

(Δp2
c1 + Δp2

c2)
4

√

(19)  

3.3. Depth estimation model 

For the depth variation Δh =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δh2
ps + Δh2

ds

√

and velocity variation 

Δv =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δv2

ps + Δv2
ds

√
in the depth direction, they are calculated by the 

quadratic average of the PSA and DS sources. 
To build the depth estimation model, firstly, the pressure difference 

between pressure sensors is derived using PSA. 
Assume the pressure difference between the sensors consists of the 

vector Δp. If the sensor has n points, the vector Δp has n-1 pressure 
differences as follows: 

Δp = (Δp1,Δp2,⋯,Δpn− 1) (20) 

As shown in Fig. 6(b), take Δp1 as an example, the depth variation 
Δzh1 satisfies: 

Δzh1 = zR
a1 − zR

a0 (21)  

where zR
a0, zR

a1 represent the z-axis components between two adjacent 
measurement points. 

Then, the pressure difference Δp1 between p2 and p1 satisfies Δp1 =

p2 − p1. The depth variation of the pressure variable model in the depth 
direction can be calculated by: 

Δhps =
ΔPps

ρg
(22)  

where ΔPps is the change in the mean value of the pressure data of the 
SUR from the initial time to time t. 

The velocity in the depth direction varies as follows: 

vps =
Δhps

t
(23)  

3.4. Obstacle avoidance model for SUR 

In this paper, the velocity potential is related to the component of the 
translational velocity (U, V, W) based on the frame {B} and can be 
expressed as: 

Φ = UΦU(X, Y,Z) + VΦV(X,Y,Z) + WΦW(X, Y, Z) (24)  

where (X,Y,Z) represents positions on the surface of the SUR in the body- 

fixed coordinate system. dX
dt = U,

dY
dt

= V,
dZ
dt

= W . ФU, ФV, ФW, 

respectively, represent the velocity potential alone the OX-axis, OY-axis 
and OZ-axis in frame {B}. 

If δ= (δX, δY , δZ) is the position error of the target, then: 

X = x + δX ,Y = y + δY ,Z = z + δZ (25) 

Fig. 7. The hydrodynamic on the surface of SUR body. The stagnation point on 
the SUR body is indicated by A, and the static point and arbitrary point are 
indicated by B and C, respectively. 
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The distance d between the SUR and the target using the Taylor 
equation can be expressed as: 

d = ρ0 +
x − x0

ρ0
δx +

y − y0

ρ0
δy +

z − z0

ρ0
δz (26)  

where ρ0 is the initial state and (x,y,z) is the coordinate of the target. 
(x − x0)/ρ0, (y − y0)/ρ0, (z − z0)/ρ0 are the cosine value of x, y, z coordi-
nate axes. 

However, in underwater collision avoidance, puffing the obstacles 
(collision hazard area) conduces to improve the safety of execution and 
reach the target position successfully, as shown in Fig. 8. It can be seen 
that the SUR can avoid obstacles using horizontal motion and vertical 
motion, detailed in [4]. Considering the particularity of the SUR work-
ing environment, we divide the hazard area by establishing the corre-
sponding three-dimensional velocity potential field, namely the 
horizontal plane collision area (as shown in Fig. 8(b)) and the vertical 
plane collision area (as shown in Fig. 8(c)). 

It can be seen from Fig. 8(b) that the horizontal hazard area is 
OY1SY2, and VXY is the relative velocity within this area. Similarly, in 
Fig. 8(c) the vertical hazard area is OZ1SZ2, and VXZ is the relative ve-
locity within this area. 

If we assume that the velocity potential U is synthesized from the 
horizontal velocity potential UH and the vertical velocity potential UV, 
yields: 

U = UH ⊕ UV (27)  

where ⊕ represents the composite operator. 
The horizontal velocity potential UH represents the collision risk of 

the SUR in the horizontal plane, can be expressed as: 

UH =

{
UHD • UHt if θxy < θH

0 else (28)  

where 

sinθH =
dXY

DXOY

UHD =
1

DXOY
•

(
1

|sinθXY |
−

1
sinθH

)

UHt = exp
(

−
DXOY

|VXY |cosθXY

)

(29)  

where θXY is the angle between the VXY and OS. DXOY represents the 
distance between the SUR and the obstacle in the horizontal plane, and 
dxy represents the shortest distance allowed between the SUR and the 
obstacle. UHD and UHt are used to evaluate the shortest distance between 
the SUR and the obstacle and the time when the collision occurs, 
respectively. 

Similarly, the vertical velocity potential UV can be written as: 

UV =

{
UVD • UVt if θxz < θV

0 else (30)  

where 

sinθV =
dXZ

DXOZ

UVD =
1

DXOZ
•

(
1

|sinθXZ |
−

1
sinθV

)

UVt = exp
(

−
DXOZ

|VXZ |cosθXZ

)

(31)  

If UH and UV are greater than 0, it means that the relative velocity vector 
VXY and VXZ are in the collision area. The larger the values of UH and UV, 
the higher the risk of SUR’s collision. By adjusting the value of UH and 
UV, SUR makes a decision to avoid obstacles. 

3.5. Multi-sensor optimal estimation 

In practical applications, due to the different physical characteristics 
of each sensor, it is likely that there will be differences in accuracy be-
tween sensors. Therefore, in order to obtain more accurate results, the 

Fig. 8. SUR underwater obstacle avoidance decomposition diagram, (a) Relationship between SUR and obstacles (b) Horizontal motion (b) Vertical motion.  
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data of each sensor is proportionally distributed during the processing. 
Assuming that the measurement is performed at time t, the measurement 
results of different sensors are: 

V̂ estimated = Wt1 Mt1 + Wt2 Mt2 (32)  

where Mt1 ,Mt2 represent the measured values of two independent sen-
sors, and Wt1 ,Wt2 indicate the weight of measured value of each sensor. 

Then the estimated error can be described as: 

F = E
(
Ṽ

2
t

)
= (Wt1 )

2δt1 + (I − Wt1 )
2δt2 (33)  

Here, the cost function F is used to represent the root mean square error 
of Ṽestimated [45], as follows: 

Ṽestimated = Vestimated − V̂ estimated (34)  

where δt1 , δt2 represent the random error, and Wt1 ,Wt2 indicate the 

weight of measured value of each sensor. 
To obtain the smallest cost function F, let φ = (Wt1 ,Wt2 ) and derivate 

φ. 

∂F
∂φ

= 0 (35) 

The optimized weight can be solved as: 

Wt1 =
δt1

δt1 + δt2
,Wt2 =

δt2

δt1 + δt2
(36) 

According to Eq. (32), the best estimate simplifies: 

V̂ estimated =
δt1

δt1 + δt2
Mt1 +

δt2

δt1 + δt2
Mt2

=
δt1 δt2

δt1 + δt2

(
1

δt1
Mt1 +

1
δt2

Mt2

) (37) 

The error covariance matrix after fusion is 

δt =
δt1 δt2

δt1 + δt2

(
1

δt1
+

1
δt2

)− 1

(38)  

If there are N sensors, the measurement matrix are {Mtn}, and n = 1,2,
⋯,N represents Gaussian white noise. Next, the weighting coefficients 
corresponding to the measured values of each sensor can be obtained 
based on the limit theory of multivariate function. 

Wtq =
1/δtn

∑N
n=1(1/δtn )

(39)  

Thus, the error covariance matrix after fusion can be rewritten: 

δt =

(
1

δt1
+

1
δt2

+ ⋯ +
1

δtn

)− 1

(40) 

Fig. 9. Experimental platform for the SUR we setup.  

Fig. 10. Conditions used during underwater motion testing. (a) Diving and rising motion (b) Linear motion, The SUR started following the first linear track (1). Once 
the first endpoint was reached, it moved along the second linear track (2). (c) Comprehensive motion, the SUR started following the linear track (1). When the second 
endpoint was reached, it dived to the target depth. Once the third endpoint (3) was reached, at this time, the SUR rise to the surface. Next, the SUR followed the linear 
track (4) until reaching the target position. 
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And the optimized estimate of MSIF model can be described as: 

V̂ estimated = δt

(
1

δt1
Mt1 +

1
δt2

Mt2 +⋯ +
1

δtn
Mtn

)

(41)  

4. Experimental results 

In this section, we describe the experimental platform and perform 
some experiments, such as autonomous movement experiments, 
obstacle avoidance experiments, etc., to verify the performance of the 
proposed MSIF model. 

4.1. Experimental description and setup 

In this work, the MSIF model is used to achieve performance testing 
of SUR attitude estimation, positioning, and obstacle avoidance. Fig. 9 
shows some experiments performed in a pool with the size of 300 cm x 
200 cm x 100 cm (length x width x height). The water depth was about 
80 cm. The observation system is mainly used to realize SUR two- 

dimensional position measurement and underwater data transmission. 
The attitude of the SUR is mainly monitored by the IMU and PSA. 
Specifically, the PSA data is pre-processed and trained by the motion 
state of SUR in still water, and the training method uses the BPNN 
machine learning tool. 

To effectively verify the performance of the MSIF model, a series of 
experiments are performed. According to the motion characteristics of 
the SUR, see Fig. 8(a), a comprehensive evaluation of the performance of 
SUR is conducted. The specific metrics are as follows: pitch angle and 
roll angle, it is necessary to ensure that the pitch angle and roll angle 
swing around 0◦ in real time to adjust the attitude when performing 
tasks. Then, the data of DS and observation system are analysed to track 
the motion trajectory of SUR. Next, we evaluated the velocity and angle 
errors, etc., to verify the performance of the MSIF model. Finally, 
comparative experiments under different machine learning tools were 
conducted, which verified the accuracy, effectiveness and feasibility of 
BPNN and MSIF models. 

4.2. Motion experiments and trajectories 

Firstly, to validate the performance of the proposed MSIF model, 
three different conditions are set in the motion experiment, as shown in 
Fig. 10. Fig. S1 shows the tracking process of the SUR in motion ex-
periments. Considering the dynamic nature of the experimental envi-
ronment, it is not enough to conduct only a single experiment, so SUR 
repeats the experiment 5 times in each condition, and infers and trains 
the overall data by repeating the experiment multiple times. 

Fig. 10(a) shows the diving and rising motions of the SUR. The SUR 
initially performs a diving motion until the target depth is reached, 
about 80 cm. After 1 s of stagnation, perform a rising motion to reorient 
back to the original starting position. The settings are as follows: the 
starting position is (25 cm, 0 cm), and the target depth position is (25 cm, 
− 80 cm). The dataset only provides the part of the trajectory showing 
the target depth in YOZ plane, as shown in Fig. 11. Noted that the 
estimated trajectory and measured trajectory are represented by ET and 
MT, respectively. Then, we calculated the position error in the motion 
experiment, see Fig. 12. The total path length of the SUR is about 185 
cm. The error between the two end points of the ET and MT is about 4.6 
cm. 

Fig. 10(b) shows the linear motion of SUR, the robot first moves 
along track (1), from starting position (175 cm, 275 cm). After reaching 
the end point of track (1), continue to move along track (2) until 
reaching the target position (25 cm, 25 cm). Fig. 13 shows the trajectory 

Fig. 11. Trajectory tracking result of the SUR in the diving and rising motion.  

Fig. 12. Position tracking errors of the SUR in motion experiments and obstacle avoidance experiments.  
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of the SUR in linear motion. The total time is 15 s. Besides, the position 
error, as shown in Fig. 12, between two end points is about 3.8 cm, while 
the total path is 452 cm. 

In the comprehensive motion experiments, see Fig. 10(c), the SUR 
starts from the starting point (175 cm, 275 cm, 0 cm), when the first 
endpoint is reached, the SUR dived to the target depth (175 cm, 25 cm, 
− 80 cm). Once the second endpoint is reached, the SUR stops and sur-
faces. When the target point (25 cm, 25 cm, 0 cm) is reached, the SUR 
stops moving. Fig. 14 shows the trajectory of the SUR in 18 s. Overall, in 
the comprehensive motion, the estimated trajectory reflects the change 
law of the measured trajectory well, the position error of the two end 
points, as shown in Fig. 12, is about 5.3 cm, and the total path length of 
the robot is about 635 cm. 

4.3. Obstacle avoidance experiments and trajectories 

Subsequently, to validate the performance of the MSIF model in the 

presence of obstacles, the obstacle avoidance experiment is tested from 
three different positions, as shown in Fig. 15. Fig. S2 shows the tracking 
process of the SUR in obstacle avoidance experiments. The settings are 
as follows: the SUR starts from three different positions, Position 1 (25 
cm, 25 cm), Position 2 (25 cm, 100 cm), Position 3 (25 cm, 175 cm), 
respectively, and cruises to the target position (275 cm, 100 cm). 

Fig. 16 shows the experimental result of the SUR in different posi-
tions. It can be seen that SUR can safely reach the target position after 
avoiding obstacles, and the trend of curves at different positions are 
approximately the same. Noted that around 10 s, there is a certain dif-
ference in the SUR’s obstacle avoidance performance. Due to the posi-
tion (see Fig. S2) of the Obstacle 2 have a certain deviation under the 
action of the water waves. But the SUR can avoid obstacles successfully 
at the same time, and the error is less than 8 cm, as shown in Table 2. For 
each case and different positions, the obstacle avoidance performance 
further verifies the effectiveness and feasibility of the proposed MSIF 
model. Meanwhile, the experimental results of this study also offer an 

Fig. 13. Tracking result of the SUR in the linear motion.  

Fig. 14. Tracking result of the SUR in the comprehensive motion.  
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intuitive and innovative design for the next generation of path planning 
strategies. 

It can be known from Table 2 that when the starting position is 
different, the time spent by SUR is different. When the SUR starts from 
Position 1 and Position 3, the required time is about 23 s, and the 

maximum position error is about 7.9 cm. The error difference between 
different positions is less than 2 cm. As shown in Fig. 12, the position 
error of the two end points in different positions is about 7.4 cm, 6.8 cm, 
5.7 cm, respectively. 

5. Discussion 

After completing the above experiments, we further evaluate the 
comprehensive metrics to verify the performance of the MSIF model. 
Noted that the above experiments were all carried out under outdoor 
(Kagawa University, Takamatsu, Japan) conditions without further 
considering the practicability of the MSIF model for SUR in open waters 
such as rivers and lakes. In the future, we will further improve the 
related work. In addition, we also believe that the MSIF model is 
promising for autonomous motion and parameter estimation in sce-
narios such as lakes and rivers after evaluating the performance of the 
MSIF model. 

In this section, we analyze the optimized parameters under various 
experiments to verify the MSIF model performance. A series of data is 
trained and validated using BPNN method. Experimental results show 
that the proposed MSIF model improves the accuracy of sensor mea-
surements and reduces errors, compared to the data measured by a 
single type of sensor. 

5.1. Experimental conditions analysis 

In Fig. 12, we analyze the position error under different motion and 
obstacle avoidance experiments, the maximum position error is less than 
8 cm. Next, we summarize the velocity and angle changes for different 
conditions to evaluate the performance of MSIF model. Fig. 17 shows the 
range of velocity, pitch and roll changes during and obstacle avoidance 
experiments. 

From Fig. 17(a), it can be concluded that the velocity change in 
diving and rising motion is relatively stable during the movement. At 
about 5 s, the SUR reaches the end point of the track (1), see Fig. 10(a). 
Then perform the rising motion after about 1 s. At the same time, it can 
be seen that the MSIF effectively reduces the peaks caused by pitch and 

Fig. 15. Conditions used during underwater obstacle avoidance testing. (a) The SUR started moving from the Position 1. (b) Started at the Position 2. (c) Started at the 
Position 3. 

Fig. 16. Experimental results of SUR in different positions.  

Table 2 
Experimental results under different starting positions.  

Case Max position 
error [cm] 

Min position 
error [cm] 

Mean position 
error [cm] 

Traveling 
time (s) 

Position 
1 

7.89 2.26 5.18 22.5 

Position 
2 

6.41 1.23 3.77 19 

Position 
3 

7.56 1.72 4.59 23  
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roll bias caused by the external environment (wave and surge motion, 
etc.), which may be particularly beneficial for the accuracy of SUR 
estimation and motion underwater in the future. 

The incentive for linear motion is mainly to test the robustness of the 
SUR’s velocity estimation during turns. Fig. 17(b) shows the velocity, 
pitch and roll angle changes of the SUR in linear motion, see Fig. 10(b). 
Especially during turning, about 7 s, the rapid drop in SUR velocity helps 
to track and control the steering safely. It can be seen that no significant 
deviation is observed during the turning. At the same time, it can be 
observed that the attitude angle can be adjusted in time during the 
movement and turning. The results further demonstrate that, together 
with the linear motion experimental results, the proposed MSIF model is 
able to perform reliable velocity and angle estimates for SUR common 
task trajectories, which further improves the expected accuracy and 
robustness. 

The comprehensive motion includes linear motion, diving motion 
and rising motion, see Fig. 10(c). Fig. 17(c) shows the measured and 
estimated values of velocity and angle under combined motion within 

27.5 s. The estimated velocity can track the measured velocity well, with 
an average absolute error of 0.0089 m/s and a maximum absolute error 
of 0.0652 m/s. Compared with the estimation results of robot velocity in 
[42,44], the MSIF model adopted in this paper can accurately estimate 
velocity and angle. 

In the MSIF model, we incorporate the OASA, which improves the 
practicality of the model in natural conditions. For obstacle avoidance 
experiments (see Fig. 15), we verified the measured and estimated 
values of velocity and angle at different positions, as shown in Fig. 18. 
The percentage errors for each set of experiments were 5.43%, 3.89%, 
and 4.87%, respectively. 

Considering all of the above, it can be concluded that the proposed 
MSIF model can accurately estimate the velocity and track the trajec-
tory. The SUR’s velocity and angle fluctuate widely at start and turn, 
then oscillate around a certain value, about 0.245 m/s. As we know, 
considering the combination of the estimated and measured linear ve-
locities with less error. We fused and evaluated multiple sensors to 
establish reliable ground truth for velocity estimation and trajectory 

Fig. 17. Estimated and measured velocity and angle of the SUR in motion experiments. (a) Estimated and measured velocity and angle in the diving and rising 
motion. (b) Estimated and measured velocity and angle in the linear motion (c) Estimated and measured velocity and angle in the comprehensive motion. (a) velocity 
and angle change in diving and rising motion (b) velocity and angle change in linear motion (c) velocity and angle change in comprehensive motion. 
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tracking. Therefore, this paper provides a promising approach for un-
derwater robots using MSIF model. 

5.2. Training and testing results based on BPNN 

In Section 2.3, some machine learning tool methods are described 
and related parameters are set. Here, training results on multi-source 

Fig. 18. Estimated and measured velocity and angle of the SUR in obstacle avoidance experiments (Position 1, Position 2 and Position 3, see Fig. 15).  

Fig. 19. Training and testing accuracy of the BPNN for 10 epochs.  

Fig. 20. MSIF model with BPNN analysis from the perspective of attitude (IMU and IMU+PSA), depth (DS and DS+PSA) and obstacle avoidance (DS+OASA and 
IMU+PSA+OASA+DS). 
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information data are given. 
Fig. 19 shows the accuracy plot of BPNN during training and testing 

for ten epochs. It can be seen that the training accuracy rate gradually 
increased, and finally converged at around 98.65%, while the test 
convergence was around 98.405%. Then, from the perspective of atti-
tude, depth and obstacle avoidance, we divided the data types into three 
categories for analysis, namely IMU+PSA, DS+PSA, and 

IMU+PSA+OASA+DS. The training performance of the MSIF model 
with BPNN is validated by checking the accuracy of the three categories, 
as shown in Fig. 20. From the perspective of attitude adjustment, 
compared with the IMU self-resource, the average accuracy of the 
IMU+PSA is improved by 7.91%, which is about 90.55%. From the 
depth perspective, the average accuracy of DS+PSA is improved by 
4.68% compared to self-resource DS, which is about 94.35%. From the 
perspective of obstacle avoidance, compared with OASA+DS, the 
average accuracy of IMU+PSA+OASA+DS based on the MSIF model is 
improved by 9.22%, about 98.65%. These results demonstrate that the 
proposed MSIF model can effectively improve the SUR’s underwater 
attitude adjustment, positioning and obstacle avoidance skills. 

5.3. Comparison of the BPNN with other techniques 

In this part, to further evaluate the performance of the MSIF model 
with BPNN method, we compared the BPNN method with Random 
Forest Algorithm (RF), Support Vector Machine (SVM), Naive Bayesian 

Fig. 21. A comparison of the three categories using BPNN method with LR, NB, RF and SVM algorithms. (a) IMU and IMU+PSA (b) DS and DS+PSA (c) DS+OASA 
and IMU+PSA+OASA+DS. 

Table 3 
Comparison results of MSIF model under different machine learning tools.  

Conditions NB 
(%) 

RF 
(%) 

SVM 
(%) 

BPNN 
(%) 

LR 
(%) 

IMU 56.78 71.25 80.52 82.64 70.53 
IMU+PSA 73.97 68.56 84.21 90.55 79.46 
DS 44.37 56.89 79.83 89.67 82.58 
DS+ PSA 67.43 75.24 83.12 94.35 86.77 
DS+OASA 71.34 65.87 83.59 89.43 85.71 
IMUþPSAþDSþOASA 79.53 83.46 90.26 98.65 89.32  
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(NB), and Logistic Regression (LR). RF, SVM, NB and LR use the same 
preprocessed data from BPNN for training and testing. Fig. 21 shows the 
prediction accuracy under the five algorithms, it can be seen that the 
average test accuracy of IMU+PS+DS+OAS under NB, RF, SVM, LR and 
BPNN is 79.53%, 83.46%, 90.26%, 89.32% and 98.65, respectively. 
After the MSIF model using BPNN method, see Table 3, the maximum 
accuracy is improved by about 19.12%, compared to NB method. From 
the comparative outcome, the MSIF model with BPNN method contests 
well with the other classical methods (RF, SVM, NB and LR). 

Furthermore, from the perspective of attitude with IMU and IMU+-
PSA, the BPNN method is 11.39%, 2.12%, 25.86% and 12.11% more 
accurate than the RF, SVM, NB and LR algorithms, respectively. With 
IMU+PSA, outperforms 21.99%, 6.34%, 16.58% and 11.09%, respec-
tively. In addition, from the perspective of DS, the BPNN method is 
32.78%, 9.84%, 45.3% and 7.09% more accurate than the RF, SVM, NB 
and LR algorithms, respectively. With DS+PSA, outperforms 19.11%, 
11.23%, 26.92% and 7.58%, respectively. By combining features 
extracted from multiple sensor datasets, it can be seen that the MSIF 
model achieves the best results using the BPNN method. These indicate 
that the MSIF model can help AUVs perform tasks safely and improve the 
performance efficiency of various skills in autonomous underwater 
motion. 

In addition, we further analyzed the RMSE of this work, which is 
0.053 and 0.19 offline and online, respectively. It is the smallest 
compared to a single type sensor node. Furthermore, we also compared 
with other studies, as shown in Table 4, it can be seen that the RMSE of 
this work is smaller than that of the methods proposed by Yang et al. 
[39], Li et al. [41], Dong et al. [46] and Feng et al. [47]. The accuracies 
are optimized by about 8.7%, 2.5% and 14.05%, respectively, compared 
to Yang et al. [39], Feng et al. [47] and Liu et al. [48]. Compared with the 
work of Dong et al. [46], the accuracy is optimized by about 21.25%. It is 
worth noting that in the previous work, most of the studies only focus on 
the training of a single control mode, this work considers both online or 
offline data training, which has more practical application value for 
AUVs. 

As reflected by the experimental results, the proposed model exhibits 
very high accuracy in training using the BPNN method. In the context of 
machine learning, it is crucial to compare BPNN with other learning 
algorithms. It can be concluded that the BPNN method has similar ac-
curacy to the SVM model when evaluating tool manipulation skills and 
experimental results in large datasets, which is also supported by [17,39, 
49-50]. Notably, the adopted training model performs better than 
several other traditional machine learning models. This also proves that 
the combination of multi-source information is of great significance for 
the underwater movement and skill training of AUVs. 

6. Conclusions 

In this paper, we proposed a MSIF model for SUR to improve the 
practical application value in performing tasks. By constructing the 
optimized prediction models, such as attitude optimization model, ve-
locity and depth estimation model, and obstacle avoidance model, the 
correlation and fusion scheme between multiple sensors in MSIF is 
developed. Then, the BPNN method was used for training and parameter 
optimization to improve the accuracy and effectiveness of the MSIF 
model. Next, a series of autonomous locomotion experiments and 
obstacle avoidance experiments were performed by integrating the MSIF 
model into our developed SUR to comprehensively evaluate perfor-
mance metrics, including velocity, angle, and motion trajectory, etc. 
Some experimental results were drawn, as follows: 

In the motion experiment, the SUR motion trajectory with an average 
absolute error is about 0.0089 m/s, and a maximum absolute error is 
about 0.0652 m/s. Compared with the obstacle avoidance experiment, 
the percentage errors for each set of experiments (Position 1, Position 2 
and Position 3) were 5.43%, 3.89%, and 4.87%, respectively. Further, 
the motion trajectory and attitude angle of the SUR are analyzed. The 
above experimental results prove that the MSIF model can accurately 
estimate the velocity and angle, and has greater advantages for SUR in 
attitude adjustment, positioning and obstacle avoidance. Subsequently, 
the accuracy of the adopted BPNN model was as high as 98.65%, which 
was 8.39%, 15.19%, 19.12% and 9.33% higher than that of SVM, RF, NB 
and LR, respectively. Then, the MSIF model was compared with other 
studies, the accuracy was optimized by about 8.7%, 2.5% and 14.05%, 
respectively, compared to Yang et al. [39], Feng et al. [47] and Liu et al. 
[48]; The RMSE was reduced by about 0.08, 0.3, 0.405, respectively, 
compared to Li et al. [41], Dong et al. [46], Feng et al. [47]. 

Based on the theoretical derivation and experimental results, it could 
be concluded that the proposed model offered high prediction accuracy 
for AUV’s characteristic evaluation than individual data sources. The 
MSIF model proposed in this paper has a certain reference value for the 
fusion of other data sources, and also validates the importance of the 
MSIF model for optimizing the attitude, positioning and obstacle 
avoidance of AUVs. 
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Table 4 
Performance comparison of RMSE for the proposed method and other studies.  

Related 
efforts 

Methods Control 
mode 

Prediction 
type 

Results 
RMSE Accuracy 

Yang et al.  
[39], 
2021 

BPNN Online Regression 0.16 0.894 

Li et al.  
[41], 
2022 

BPNN Online Regression 0.27 0.9825 

Dong et al. 
[46], 
2019 

BPNN Offline Regression 0.353 0.774 

Feng et al.  
[47], 
2022 

GA-BPNN- 
ARMA 

Online Classification 0.595 0.956 

Liu et al.  
[48], 
2020 

BPNN Online Regression 0.0679 0.8405 

This work BPNN Offline/ 
Online 

Regression 0.053/ 
0.19 

0.9865/ 
0.981  
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